Abstract

Appropriate pectin deposition in cell walls is important for cell growth in plants. Rhamnogalacturonan II (RG-II) is a portion of pectic polysaccharides; its borate crosslinking is essential for maintenance of pectic networks. However, the overall process of RG-II synthesis is not fully understood. To identify a novel factor for RG-II deposition or dimerization in cell walls, we screened Arabidopsis mutants with altered boron (B)-dependent growth. The mutants exhibited alleviated disorders of primary root and stem elongation, and fertility under low B, but reduced primary root lengths under sufficient B conditions. Altered primary root elongation was associated with cell elongation changes caused by loss of function in AtTMN1 (Transmembrane Nine 1)/EMP12, which encodes a Golgi-localized membrane protein of unknown function that is conserved among eukaryotes. Mutant leaf and root dry weights were lower than those of wild-type plants, regardless of B conditions. In cell walls, AtTMN1 mutations reduced concentrations of B, RG-II specific 2-keto-3-deoxy monosaccharides, and rhamnose largely derived from rhamnogalacturonan I (RG-I), suggesting reduced RG-II and RG-I. Together, our findings demonstrate that AtTMN1 is required for the deposition of RG-II and RG-I for cell growth and suggest that pectin modulates plant growth under low B conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call