Abstract

The construction of novel inorganic-organic hybrid nanomaterials for synchronous photocatalytic removal of heavy metal ions and organic pollutants has received significant attention. We successfully synthesized gold-loaded graphene oxide/PDPB (polymer poly(diphenylbutadiyne)) composites (Au-GO/PDPB) through a facile mechanical agitation and photoreduction method. The composites were characterized by XPS and TEM images, which confirmed the presence of GO and Au nanoparticles on the PDPB. The as-prepared Au-GO/PDPB composites displayed enhanced photocatalytic activity compared with that of pure PDPB for the synchronous photoreduction of hexavalent chromium (Cr(VI)) and photo-oxidation of phenol. We also determined the optimal loading mass of GO and Au nanoparticles on the PDPB; the Au1-GO2/PDPB (2.0 wt% GO and 1.0 wt% Au) composite displayed the best photocatalytic activity among all the catalysts. Our study provides a facile way to prepare inorganic-organic composites for the synchronous photocatalytic removal of heavy metal ions and organic pollutants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call