Abstract
AbstractFor an infinite cardinal ℵ an associative ring R is quotient ℵ<-dimensional if the generalized Goldie dimension of all right quotient modules of RR are strictly less than ℵ. This latter quotient property of RR is characterized in terms of certain essential submodules of cyclic modules being generated by less than ℵ elements, and also in terms of weak injectivity and tightness properties of certain subdirect products of injective modules. The above is the higher cardinal analogue of the known theory in the finite ℵ = ℵ0 case.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.