Abstract

Reverse bias current–voltage measurements of ∼100-μm-diameter gold Schottky contacts deposited on as-received, n-type ZnO(0001̄) wafers and those exposed for 30 min to a remote 20% O2/80% He plasma at 525±20 °C and cooled either in vacuum from 425 °C or the unignited plasma gas have been determined. Plasma cleaning resulted in highly ordered, stoichiometric, and smooth surfaces. Contacts on as-received material showed μA leakage currents and ideality factors >2. Contacts on plasma-cleaned wafers cooled in vacuum showed ∼36±1 nA leakage current to −4 V, a barrier height of 0.67±0.05 eV, and an ideality factor of 1.86±0.05. Cooling in the unignited plasma gas coupled with a 30 s exposure to the plasma at room temperature resulted in decreases in these parameters to ∼20 pA to −7 V, 0.60±0.05 eV, and 1.03±0.05, respectively. Differences in the measured and theoretical barrier heights indicate interface states. (0001) and (0001̄) are used in this letter to designate the polar zinc- and oxygen-terminated surfaces, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.