Abstract

Efficient photothermal conversion of gold nanoparticles with strong light absorption suggests their wide use as selective photothermal agents in biomedical fields. The aim of this study is to investigate the use of gold nanospheres (GNPs) as exogenous visible light absorbers to improve laser treatment of port-wine stains. Thiol-terminated methoxypolyethylene glycol modified GNPs (PEG-GNPs) with peak extinction matching the visible light wavelength of the laser being used were synthesized. An in vitro capillary experiment was prepared to investigate the thermal response of blood vessels with and without injection of 4.54 mg PEG-GNPs in mice prior to irradiation by a frequency-doubled Nd:YAG laser at a wavelength of 532 nm. The in vitro results demonstrated that the photocoagulation size in blood vessels after exposed to laser light increased with the increment of concentration of PEG-GNPs in blood within a certain range. However, the unwanted thermal response (i.e., cavitation) occurred when the concentration of PEG-GNPs in blood was larger than 2.5 mg/ml. The in vivo results suggested that more obvious blood thermal response can be induced by laser light after injection of PEG-GNPs. After injection of 4.54 mg PEG-GNPs, laser radiant exposure required for thread-like constriction of blood vessels decreased from 12.5 to 9.8 J/cm2 with the pulse duration of 10 ms, from 15 to 11.85 J/cm2 with the pulse duration of 30 ms, respectively. This in vitro and in vivo experimental results show that PEG-GNPs combined with laser light could be a promising modality to reduce the radiant exposure required for obvious blood thermal response, thereby providing a potential strategy for improving the laser treatment of cutaneous vascular lesions. Lasers Surg. Med. © 2018 Wiley Periodicals, Inc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.