Abstract

Gold nanorods (AuNR) have received significant attention in tumor thermo-chemotherapy. However, insufficient thermal availability limits the in vivo highly efficient applications of AuNR in photothermal therapy. In this study, we have fabricated N-isopropylacrylamide grafted O-carboxymethyl chitosan nanoparticles (NCMC NPs) with thermo-responsive properties for co-encapsulating AuNR and doxorubicin (DOX), forming AuNR@NCMC/DOX nanocomposites (NCs). As a result of the thermo- and photothermal-responsiveness, AuNR@NCMC/DOX NCs exhibited irreversible aggregation at high temperature and under near-infrared (NIR) irradiation with an increase of size to 3 μm. When AuNR@NCMC/DOX NCs reached tumor sites following intravenous administration, they were located in the tumor vessels under NIR irradiation due to an embolization effect. This response enhanced tumor targeting, on-demand release, and the thermal performance of AuNR@NCMC/DOX NCs. We have observed higher tumor accumulation of DOX and AuNR with subsequent stronger inhibition of tumor growth than that achieved without NIR irradiation. The development of AuNR-based NCs with multiple smart responsivenesses at tumors can provide a promising paradigm for solid tumor treatment via the cooperative effects of photothermal therapy and chemoembolization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.