Abstract
Production of antimicrobial agents through the synthesis of gold nanoparticles using green technology has been extensively made consistent by various researchers; yet, this study uses the flower bud’s aqueous extracts of Brassica oleracea (Broccoli) as a reducing agent for chloroauric acid (1 mM). After 30 min of incubation, synthesis of gold nanoparticles (AuNps) was observed by a change in extract color from pale yellow to purple color. Synthesis of AuNps was confirmed in UV–visible spectroscopy at the range of approximately 560 nm. The SEM analysis showed the average nanoparticles size of 12–22 nm. The antimicrobial activity of AuNps was analyzed by subjecting it to human pathogenic bacteria (Gram-positive Staphylococcus aureus and Gram-negative Klebsiella pneumonia) and fungi (Aspergillus flavus, Aspergillus niger and Candida albicans) using disc diffusion method. The broccoli-synthesized AuNps showed the efficient antibacterial and antifungal activity of above-mentioned microbes. It was confirmed that AuNps have the best antimicrobial agent compared to the standard antibiotics (Gentamicin and Fluconazole). When the concentrations of AuNps were increased (10, 25, and 50 µg/ml), the sensitivity zone also increased for all the tested microbes. The synthesized AuNps are capable of rendering high antimicrobial efficacy and, hence, have a great potential in the preparation of drugs used against major bacterial and fungal diseases in humans.
Highlights
In this twenty-first century, most of the human pathogenic bacteria and fungi adversely change in their molecular level and are highly resistant in commonly used antibiotics
The antimicrobial activity of AuNps was analyzed by subjecting it to human pathogenic bacteria (Grampositive Staphylococcus aureus and Gram-negative Klebsiella pneumonia) and fungi (Aspergillus flavus, Aspergillus niger and Candida albicans) using disc diffusion method
It could be stated that we succeeded in biological reduction of gold nanoparticles by broccoli (Brassica oleracea)
Summary
In this twenty-first century, most of the human pathogenic bacteria and fungi adversely change in their molecular level and are highly resistant in commonly used antibiotics. In the recent years, areas such as microscopy have given new tools to scientists to understand and take advantage of phenomena that occur naturally when matter is organized at the nanoscale. The fact that a majority of biological processes occur at the nanoscale gives scientists models and templates to imagine and construct new processes that can enhance their work in biomineralization (Robert and Schiffmant 1990; Rajesh et al 2002), bioremediation (Francesco and Francesca 1997; Stephen and Macnaughton 1999; Watanabe 2001), bioleaching (Brierley and Brierley 2001; Harvey and Crundwell 1997), microbial corrosion (Peter Angell 1999), biomedical materials (Chad et al 1996; David 2003) and many other fields. One of the major applications of nanotechnology is in biomedicine in that nanoparticles can be engineered as nanoplatforms for
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.