Abstract

pH-responsive poly(4-vinylpyridine) (P4VP) grafted cellulose nanocrystals (P4VP-g-CNC) were prepared by Surface-Initiated Atom Transfer Radical Polymerization (SI-ATRP) and subsequently used to stabilize gold nanoparticles (Au NPs) as efficient and recyclable nanocatalysts for the reduction of 4-nitrophenol (4NP). The presence of P4VP brushes on the CNC surface controlled the growth of Au NPs yielding smaller averaged diameter compared to Au NPs deposited directly on pristine CNC. The catalytic performances of pristine Au NPs, Au@CNC and Au@P4VP-g-CNC were compared by measuring the turnover frequency (TOF) for the catalytic reduction of 4NP. Compared to pristine Au NPs, the catalytic activity of Au@CNC and Au@P4VP-g-CNC were 10 and 24 times better. Moreover, the Au@P4VP-g-CNC material could be recovered via flocculation at pH>5, and the recycled nanocatalyst remained highly active.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.