Abstract
Transplant of bone marrow mesenchymal stem cells (BMSCs) has attracted considerable interest for bone regeneration. However, noninvasive and real-time tracking of location and concentration of the implanted BMSCs remains a big challenge. Herein we designed a novel approach involving the surface modification of gold nanoparticles (AuNPs) with silica layers and DNA Transfectin 3000 (TS) to improve biocompatibility and to enhance the uptake by BMSCs, hence rendering the ability of tracking BMSCs with dual-energy computer tomography (DECT). Results showed that the endocytosis of AuNPs@SiO2-TS by BMSCs was as high as ∼255 pg/cell after one-day incubation and did not obviously decrease after 14 days. Meanwhile, the AuNPs@SiO2-TS had no influence on the viability, cell cycle, and capabilities on osteogenic, chondrogenic, and adipogenic differentiation of BMSCs. Under a bone-defect rabbit model, the DECT images showed the migration of BMSCs toward a cortical bone defect without variation in volume. This study demonstrated that AuNPs@SiO2-TS could be a potential cellular probe for noninvasive and real-time tracking of BMSCs in bone tissue repairs using clinical CT or DECT techniques. It provided a novel and intuitive methodology for observing and investigating the bone regeneration in clinic.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.