Abstract

Constructing high-order DNA nano-architectures in large sizes is of critical significance for the application of DNA nanotechnology. Robust and flexible design strategies together with easy protocols to construct high-order large-size DNA nano-architectures remain highly desirable. In this work, the authors report a simple and versatile one-pot strategy to fabricate DNA architectures with the assistance of spherical gold nanoparticles modified with thiolated oligonucleotide strands (SH-DNA-AuNPs), which serve as "power strips" to connect various DNA nanostructures carrying complementary ssDNA strands as "plugs". By modulating the plug numbers and positions on each DNA nanostructure and the ratios between DNA nanostructures and AuNPs, the desired architectures are formed via the stochastic co-assembly of different modules. This SH-DNA-AuNP-mediated plug-in assembly (SAMPA) strategy offers new opportunities to drive macroscopic self-assembly to meet the demand of the fabrication of well-defined nanomaterials and nanodevices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.