Abstract

Traditional immunoassays exhibit insufficient screening sensitivity for foodborne pathogens due to their low colorimetric signal intensities. Herein, we propose an ultrasensitive dynamic light scattering (DLS) immunosensor for Salmonella based on a "cargo release-seed growth" strategy enabled by a probe, namely gold nanoparticle-decorated covalent organic frameworks (COF@AuNP). Large amounts of AuNPs in COF@AuNP can be released by acid treatment-induced decomposition of the imine-linked COF, and then they are enlarged via gold growth to generate a dramatically enhanced light-scattering signal, leading to a vast improvement in detection sensitivity. Based on an immunomagnetic microbead carrier, the proposed DLS immunosensor is capable of detecting trace Salmonella in milk in the range of 2.0 × 102-2.0 × 105 CFU mL-1, with a limit of detection of 60 CFU mL-1. The immunosensor also demonstrated excellent selectivity, good accuracy and precision, and high reliability for detecting Salmonella in milk.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.