Abstract

Breast cancer (BC) is one of the most common malignant tumors in women worldwide, and its incidence is increasing every year. Early diagnosis and treatment are critical to improve the curability and prognosis of patients. However, existing detection methods often suffer from insufficient sensitivity and specificity, which limits their clinical application. Fortunately, the rapid development of nanotechnology offers new possibilities for diagnosing BC. For example, the unique physicochemical properties of gold nanomaterials (Au NMs), such as fascinating optical properties and quantum size effect, along with excellent biocompatibility and modifiability, enable them to manifest great potential in the field of biosensing, especially in the detection of BC biomarkers. Through fine surface modification and functionalization, Au NMs can accurately bind to specific antibodies, nucleic acids, and other biomolecules, thus achieving sensitive and precise detection of specific biomarkers. Here, we focus on the research progress of Au NMs as a key biosensing vector in BC biomarker detection. From four major perspectives of early diagnosis, prognostic evaluation, risk prediction,and bioimaging applications, we have thoroughly analyzed the broad application of Au NMs in BC biomarker detection and prospectively addressed its possible future trends. We hope this review will provide more comprehensive ideas for future researchers and promote the further development of this field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call