Abstract

Breast cancer is the second leading cause of cancer deaths in women worldwide; therefore, there is an increased need for the discovery, development, optimization, and quantification of diagnostic biomarkers that can improve the disease diagnosis, prognosis, and therapeutic outcome. Circulating cell-free nucleic acids biomarkers such as microRNAs (miRNAs) and breast cancer susceptibility gene 1 (BRCA1) allow the characterization of the genetic features and screening breast cancer patients. Electrochemical biosensors offer excellent platforms for the detection of breast cancer biomarkers due to their high sensitivity and selectivity, low cost, use of small analyte volumes, and easy miniaturization. In this context, this article provides an exhaustive review concerning the electrochemical methods of characterization and quantification of different miRNAs and BRCA1 breast cancer biomarkers using electrochemical DNA biosensors based on the detection of hybridization events between a DNA or peptide nucleic acid probe and the target nucleic acid sequence. The fabrication approaches, the biosensors architectures, the signal amplification strategies, the detection techniques, and the key performance parameters, such as the linearity range and the limit of detection, were discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call