Abstract

The abundance of gold and selected trace elements in magmatic sulfide and rock-forming minerals from Silurian–Devonian granitoids in southwestern New Brunswick were quantitatively analyzed by laser-ablation inductively coupled plasma mass-spectrometry. Gold is mainly hosted in sulfide minerals (i.e., chalcopyrite, pyrrhotite, and pyrite), in some cases perhaps as submicron inclusions (nanonuggets). Gold is below detection (<0.02 ppm) in major rock-forming minerals (i.e., plagioclase, K-feldspar, biotite, hornblende, and muscovite) and oxides (i.e., magnetite, and ilmenite). Gold distribution coefficients between sulfide and granitoid melt are calculated empirically as: \(D^{{{\text{cpy/melt}}}}_{{{\text{Au}}}}= 948 \pm 269,{\text{ }}D^{{{\text{po/melt}}}}_{{{\text{Au}}}} = 150 \pm 83,{\text{ and }}D^{{{\text{py/melt}}}}_{{{\text{Au}}}} = 362 \pm 96\). This result suggests that gold behavior in the granitoid systems is controlled by the conditions of sulfur saturation during magmatic evolution; the threshold of physiochemical conditions for sulfur saturation in the melts is a key factor affecting gold activity. Gold behaves incompatibly prior to the formation of sulfide liquids or minerals, but it becomes compatible at their appearance. Gold would be enriched in sulfur-undersaturated granitoid magmas during fractionation, partitioning into evolved magmatic fluids and favoring the formation of intrusion-related gold deposits. However, gold becomes depleted in residual melts if these melts become sulfur-saturated during differentiation, leading to gold precipitation in the early sulfide phases of a granitoid suite. Late-stage Cl-bearing magmatic–hydrothermal fluids with low pH and relatively high oxidation state derived from either progressively cooling magmas at depth or convective circulation of meteoric water buffered by reduced carbon-bearing sediments, may scavenge gold from early sulfide minerals. If a significant amount of gold produced in this manner is concentrated in a suitable geological environment (e.g., shear zones or fracture systems), intrusion-related gold deposits may also be generated. Exploration for intrusion-related gold systems should focus on the areas around evolved phases of granitoid suites that remained sulfur-undersaturated. For sulfur-saturated granitoid suites, the less differentiated phase and associated structures are the most prospective targets.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call