Abstract

Synthetic aromatic polymers are ubiquitous and indispensable to modern life, industry, and the global economy. The direct functionalization of these materials remains a considerable challenge on account of their unreactive aromatic C–H bonds and robust physical properties. Here, we demonstrate that homogeneous gold catalysis offers a mild, chemoselective, and practical approach to functionalize high-volume commodity aromatic polymers. Utilizing a gold-catalyzed intermolecular hydroarylation between a methyl ester functionalized alkyne, methyl propiolate, and nucleophilic arenes within polystyrene (PS) results in direct functionalization of phenyl rings with 1,2-substituted methyl acrylate functional groups. The reactivity and functionalization depend on the steric and electronic environment of the catalyst, counterion pairing, and method of activation. The reactivity is broad in scope, enabling the functionalization of arenes within commercial polysulfone (PSU) and waste polyethylene terephthalate (PET). These reactions open new opportunities to chemically transform aromatic polymers and modify their physical properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.