Abstract
The study of gold and platinum diffusion is found to allow the separate observation of the intrinsic point defects, i.e., of silicon self-interstitials and of vacancies. The diffusion of gold in float zone (FZ) silicon is found to be dominated by the kick-out mechanism for temperatures of 800° C and higher. The diffusion of platinum in FZ silicon is described by the kick-out mechanism for temperatures above approximately 900° C, whereas for temperatures below approximately 850° C the dissociative mechanism governs platinum diffusion. As a result of numerical simulations, we suggest a complete and consistent set of parameters which describes the diffusion of platinum in silicon in the temperature range from 700° C to 950° C and the diffusion of gold in the temperature range from 800° C to 1100° C. The generation or recombination of self-interstitials and vacancies is found to be ineffective at least below 850° C. The concentration of substitutional platinum is determined by the initial concentration of vacancies at diffusion temperatures below 850° C. Platinum diffusion below 850°C can be used to measure vacancy distributions in silicon quantitatively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.