Abstract

The diffusion of Sb and B markers has been studied in vacancy supersaturations produced by MeV Si implantation in float zone (FZ) silicon and bonded etch-back silicon-on-insulator (BESOI) substrates. MeV Si implantation produces a vacancy supersaturated near-surface region and an interstitial-rich region at the projected ion range. Transient enhanced diffusion (TED) of Sb in the near surface layer was observed as a result of a 2 MeV Si{sup +}, 1 {times} 10{sup 16}/cm{sup 2}, implant. A 4{times} larger TED of Sb was observed in BESOI than in FZ silicon, demonstrating that the vacancy supersaturation persists longer in BESOI than in FZ. B markers in samples with MeV Si implant showed a factor of 10{times} smaller diffusion relative to markers without the MeV Si{sup +} implant. This data demonstrates that a 2 MeV Si{sup +} implant injects vacancies into the near surface region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call