Abstract

Operational stability is the main issue hindering the commercialisation of perovskite solar cells. Here, a long term light soaking test was performed on large area hybrid halide perovskite solar cells to investigate the morphological and chemical changes associated with the degradation of photovoltaic performance occurring within the devices. Using Scanning Transmission Electron Microscopy (STEM) in conjunction with EDX analysis on device cross sections, we observe the formation of gold clusters in the perovskite active layer as well as in the TiO2 mesoporous layer, and a severe degradation of the perovskite due to iodine migration into the hole transporter. All these phenomena are associated with a drastic drop of all the photovoltaic parameters. The use of advanced electron microscopy techniques and data processing provides new insights on the degradation pathways, directly correlating the nanoscale structure and chemistry to the macroscopic properties of hybrid perovskite devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.