Abstract

A Middle Tertiary volcanic belt in the High Andes of north-central Chile hosts numerous precious- and base-metal epithermal deposits over its 150 km north-south trend. The El Indio district, believed to be associated with a hydrothermal system in the late stages of development of a volcanic caldera, consists of a series of separate vein systems located in an area of 30 km 2 which has undergone intense argillic-sericitic-solfataric alteration. The majority of the known gold-copper-silver mineralization occurs within a structural block only 150 by 500 m in surface area, with a recognized vertical extent exceeding 300 m. This block is bounded by two high-angle northeast-trending faults oriented subparallel to the mineralized veins. Hypogene mineralization at El Indio is grouped into two main ore-forming stages: Copper and Gold. The Copper stage is composed chiefly of enargite and pyrite forming massive veins up to 20 m wide, and is accompanied by alteration of the wall rocks to alunite, kaolinite, sericite, pyrite and quartz. The Gold stage consists of vein-filling quartz, pyrite, native gold, tennantite and subordinate amounts of a wide variety of telluride minerals. Associated with this stage is pervasive alteration of the wall rocks to sericite, kaolinite, quartz and minor pyrophyllite. The transition from copper to gold mineralization is marked by the alteration of enargite to tennantite and by minor deposition of sphalerite, galena, huebnerite, chalcopyrite and gold. Mineral stability relations indicate that there was a general decrease in the activity of S 2 accompanied by variations in the activity of Te 2 during the Gold stage. Fluid-inclusion data show homogenization temperatures ranging from about 220 to 280°C, with salinities on the order of 3–4 eq. wt. % NaCl for the Copper stage. The Gold-stage inclusions indicate a similar range in homogenization temperatures, but significantly lower salinities (0.1–1.4 eq. wt. % NaCl). Fluid inclusions of transition minerals show a weak inverse relationship between homogenization temperatures (190–250°C) and salinities (3.4–1.4 eq. wt. % NaCl), which may represent mixing of hotter Gold-stage fluids with cooler late-Copper-stage fluids. No evidence of boiling was found in fluid inclusions, but CO 2 vapor-rich inclusions were identified in wall-rock quartz phenocrysts which pre-date copper and gold mineralization. Mineral stability calculations indicate that given a fairly restricted range of solution compositions, the Copper-, Transition- and Gold-stage minerals at El Indio could have been deposited from a single solution, with constant total dissolved sulfur which underwent reduction through time. Limited sulfur-isotope data indicates that pyrite from the Copper stage was not in isotopic equilibrium with Copper-stage alunite or Transition-stage sphalerite. The sulfur-isotope and fluid-inclusion data indicate that two fluids with comparable temperatures but different compositions flowed through the El Indio system. The earlier fluid deposited copper attended by sericite-alunite-kaolinite alteration, and later epithermal fluids deposited gold with quartz-sericite-kaolinite-pyrite alteration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.