Abstract
Quantum hardware has the potential to efficiently solve computationally difficult problems in physics and chemistry to reap enormous practical rewards. Analogue quantum simulation accomplishes this by using the dynamics of a controlled many-body system to mimic those of another system; such a method is feasible on near-term devices. We show that previous theoretical approaches to analogue quantum simulation suffer from fundamental barriers which prohibit scalable experimental implementation. By introducing a new mathematical framework and going beyond the usual toolbox of Hamiltonian complexity theory with an additional resource of engineered dissipation, we show that these barriers can be overcome. This provides a powerful new perspective for the rigorous study of analogue quantum simulators.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.