Abstract

To operate autonomously in complex environments, an agent must monitor its environment and determine how to respond to new situations. To be considered intelligent, an agent should select actions in pursuit of its goals, and adapt accordingly when its goals need revision. However, most agents assume that their goals are given to them; they cannot recognize when their goals should change. Thus, they have difficulty coping with the complex environments of strategy simulations that are continuous, partially observable, dynamic, and open with respect to new objects. To increase intelligent agent autonomy, we are investigating a conceptual model for goal reasoning called Goal‐Driven Autonomy (GDA), which allows agents to generate and reason about their goals in response to environment changes. Our hypothesis is that GDA enables an agent to respond more effectively to unexpected events in complex environments. We instantiate the GDA model in ARTUE (Autonomous Response to Unexpected Events), a domain‐independent autonomous agent. We evaluate ARTUE on scenarios from two complex strategy simulations, and report on its comparative benefits and limitations. By employing goal reasoning, ARTUE outperforms an off‐line planner and a discrepancy‐based replanner on scenarios requiring reasoning about unobserved objects and facts and on scenarios presenting opportunities outside the scope of its current mission.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.