Abstract

Goal-driven autonomy (GDA) is a reflective model of goal reasoning that controls the focus of an agent's planning activities by dynamically resolving unexpected discrepancies in the world state, which frequently arise when solving tasks in complex environments. GDA agents have performed well on such tasks by integrating methods for discrepancy recognition, explanation, goal formulation, and goal management. However, they require substantial domain knowledge, including what constitutes a discrepancy and how to resolve it. We introduce LGDA, a learning algorithm for acquiring this knowledge, modeled as cases, that and integrates case-based reasoning and reinforcement learning methods. We assess its utility on tasks from a complex video game environment. We claim that, for these tasks, LGDA can significantly outperform its ablations. Our evaluation provides evidence to support this claim. LGDA exemplifies a feasible design methodology for deployable GDA agents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.