Abstract

Robots that interact with people must flexibly respond to requests by planning in stochastic state spaces that are often too large to solve for optimal behavior. In this work, we develop a framework for goal and state dependent action priors that can be used to prune away irrelevant actions based on the robot’s current goal, thereby greatly accelerating planning in a variety of complex stochastic environments. Our framework allows these goal-based action priors to be specified by an expert or to be learned from prior experience in related problems. We evaluate our approach in the video game Minecraft, whose complexity makes it an effective robot simulator. We also evaluate our approach in a robot cooking domain that is executed on a two-handed manipulator robot. In both cases, goal-based action priors enhance baseline planners by dramatically reducing the time taken to find a near-optimal plan.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call