Abstract

Classical neurotransmitters, including monoamines, acetylcholine, glutamate, GABA, and glycine, are loaded into synaptic vesicles by means of specific transporters. Vesicular monoamine transporters are under negative regulation by alpha subunits of trimeric G-proteins, including Galpha(o2) and Galpha(q). Furthermore, glutamate uptake, mediated by vesicular glutamate transporters (VGLUTs), is decreased by the nonhydrolysable GTP-analog guanylylimidodiphosphate. Using mutant mice lacking various Galpha subunits, including Galpha(o1), Galpha(o2), Galpha(q), and Galpha11, and a Galpha(o2)-specific monoclonal antibody, we now show that VGLUTs are exclusively regulated by Galpha(o2). G-protein activation does not affect the electrochemical proton gradient serving as driving force for neurotransmitter uptake; rather, Galpha(o2) exerts its action by specifically affecting the chloride dependence of VGLUTs. All VGLUTs show maximal activity at approximately 5 mm chloride. Activated Galpha(o2) shifts this maximum to lower chloride concentrations. In contrast, glutamate uptake by vesicles isolated from Galpha(o2-/-) mice have completely lost chloride activation. Thus, Galpha(o2) acts on a putative regulatory chloride binding domain that appears to modulate transport activity of vesicular glutamate transporters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.