Abstract
Abstract Understanding the complex interactions between water vapor fields and deep convection on the mesoscale requires observational networks with high spatial (kilometers) and temporal (minutes) resolution. In the equatorial tropics, where deep convection dominates the vertical distribution of the most important greenhouse substance—water—these mesoscale networks are nonexistent. Global Navigational Satellite System (GNSS) meteorological networks offer high temporal/spatial resolution precipitable water vapor, but infrastructure exigencies are great. The authors report here on very accurate precipitable water vapor (PWV) values calculated from a GNSS receiver installed on a highly nonideal Amazon rain forest flux tower. Further experiments with a mechanically oscillating platform demonstrate that errors and biases of approximately 1 mm (2%–3% of PWV) can be expected when compared with a stable reference GNSS receiver for two different geodetic grade receivers/antennas and processing methods [GPS-Inferred Positioning System (GIPSY) and GAMIT]. The implication is that stable fixed antennas are unnecessary for accurate calculation of precipitable water vapor regardless of processing techniques or geodetic grade receiver.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.