Abstract

In this paper we propose the graduated nonconvexity and concavity procedure (GNCCP) as a general optimization framework to approximately solve the combinatorial optimization problems defined on the set of partial permutation matrices. GNCCP comprises two sub-procedures, graduated nonconvexity which realizes a convex relaxation and graduated concavity which realizes a concave relaxation. It is proved that GNCCP realizes exactly a type of convex-concave relaxation procedure (CCRP), but with a much simpler formulation without needing convex or concave relaxation in an explicit way. Actually, GNCCP involves only the gradient of the objective function and is therefore very easy to use in practical applications. Two typical related NP-hard problems, partial graph matching and quadratic assignment problem (QAP), are employed to demonstrate its simplicity and state-of-the-art performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.