Abstract

The convex and concave relaxation procedure (CCRP) was recently proposed and exhibited state-of-the-art performance on the graph matching problem. However, CCRP involves explicitly both convex and concave relaxations which typically are difficult to find, and thus greatly limit its practical applications. In this paper we propose a simplified CCRP scheme, which can be proved to realize exactly CCRP, but with a much simpler formulation without needing the concave relaxation in an explicit way, thus significantly simplifying the process of developing CCRP algorithms. The simplified CCRP can be generally applied to any optimizations over the partial permutation matrix, as long as the convex relaxation can be found. Based on two convex relaxations, we obtain two graph matching algorithms defined on adjacency matrix and affinity matrix, respectively. Extensive experimental results witness the simplicity as well as state-of-the-art performance of the two simplified CCRP graph matching algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.