Abstract

This work introduces a method for generating generalized structures of amorphous polymers using simulated polymerization and molecular dynamics equilibration, with a particular focus on amorphous polymers. The techniques and algorithms used in this method are described in the main text, and example input scripts are provided for the GMXPolymer code, which is based on the GROMACS molecular dynamics package. To demonstrate the efficacy of our method, we apply it to different glassy polymers exhibiting varying degrees of functionality, polarity, and rigidity. The reliability of the method is validated by comparing simulation results with experimental data in various structural and thermal properties, both of which show excellent agreement. This work implements the GMXPolymer simulated polymerization algorithm on the GROMACS program. GMXPolymer code controls the main polymerization loop. The energy minimizations and molecular dynamics simulations use the GROMACS program called by the GMXPolymer code. A new ITP file is generated when a new bond is formed, and the necessary additions to the ITP file are made to include new bonds, angles, and dihedrals. In preparing the ITP file of the monomer, the charge of the reactive atom must be modified before the code runs so that it is a correct value after bonding.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.