Abstract

Aluminum (Al) toxicity is an essential factor that adversely limits soybean (Glycine max (L.) Merr.) growth in acid soils. WRKY transcription factors play important roles in soybean responses to abiotic stresses. Here, GmWRKY81 was screened from genes that were differentially expressed under Al treatment in Al-tolerant soybean Baxi10 and Al-sensitive soybean Bendi2. We found that GmWRKY81 was significantly induced by 20 μM AlCl3 and upregulated by AlCl3 treatment for 2 h. In different tissues, the expression of GmWRKY81 was differentially induced. In 0–1 cm root tips, the expression of GmWRKY81 was induced to the highest level. The overexpression of GmWRKY81 in soybean resulted in higher relative root elongation, root weight, depth, root length, volume, number of root tips and peroxidase activity but lower root average diameter, malonaldehyde and H2O2 contents, indicating enhanced Al tolerance. Moreover, RNA-seq identified 205 upregulated and 108 downregulated genes in GmWRKY81 transgenic lines. Fifteen of these genes that were differentially expressed in both AlCl3-treated and GmWRKY81-overexpressing soybean had the W-box element, which can bind to the upstream-conserved WRKY domain. Overall, the combined functional analysis indicates that GmWRKY81 may improve soybean Al tolerance by regulating downstream genes participating in Al3+ transport, organic acid secretion and antioxidant reactions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call