Abstract

BackgroundAluminum (Al) toxicity is one of the most important yield-limiting factors of many crops worldwide. The primary symptom of Al toxicity syndrome is the inhibition of root growth leading to poor water and nutrient absorption. Al tolerance has been extensively studied using hydroponic experiments. However, unlike soil conditions, this method does not address all of the components that are necessary for proper root growth and development. In the present study, we grew two maize genotypes with contrasting tolerance to Al in soil containing toxic levels of Al and then compared their transcriptomic responses.ResultsWhen grown in acid soil containing toxic levels of Al, the Al-sensitive genotype (S1587-17) showed greater root growth inhibition, more Al accumulation and more callose deposition in root tips than did the tolerant genotype (Cat100-6). Transcriptome profiling showed a higher number of genes differentially expressed in S1587-17 grown in acid soil, probably due to secondary effects of Al toxicity. Genes involved in the biosynthesis of organic acids, which are frequently associated with an Al tolerance response, were not differentially regulated in both genotypes after acid soil exposure. However, genes related to the biosynthesis of auxin, ethylene and lignin were up-regulated in the Al-sensitive genotype, indicating that these pathways might be associated with root growth inhibition. By comparing the two maize lines, we were able to discover genes up-regulated only in the Al-tolerant line that also presented higher absolute levels than those observed in the Al-sensitive line. These genes encoded a lipase hydrolase, a retinol dehydrogenase, a glycine-rich protein, a member of the WRKY transcriptional family and two unknown proteins.ConclusionsThis work provides the first characterization of the physiological and transcriptional responses of maize roots when grown in acid soil containing toxic levels of Al. The transcriptome profiles highlighted several pathways that are related to Al toxicity and tolerance during growth in acid soil. We found several genes that were not found in previous studies using hydroponic experiments, increasing our understanding of plant responses to acid soil. The use of two germplasms with markedly different Al tolerances allowed the identification of genes that are a valuable tool for assessing the mechanisms of Al tolerance in maize in acid soil.

Highlights

  • Aluminum (Al) toxicity is one of the most important yield-limiting factors of many crops worldwide

  • Al induces a rapid change in cell number and positioning [4], and recent evidence suggests that DNA damage and interference with cell-cycle progression and cell differentiation are the primary causes of root growth inhibition due to Al toxicity [5]

  • While we found some Al-responsive genes previously identified in studies carried out in hydroponic growth conditions, growth in acid soil clearly triggered a new suite of physiological and transcriptional responses not previously reported

Read more

Summary

Introduction

Aluminum (Al) toxicity is one of the most important yield-limiting factors of many crops worldwide. Al induces a rapid change in cell number and positioning [4], and recent evidence suggests that DNA damage and interference with cell-cycle progression and cell differentiation are the primary causes of root growth inhibition due to Al toxicity [5]. Exclusion mechanisms take place outside the roots and prevent the entry of Al into the cell. These mechanisms include cell wall Al immobilization, increased selective permeability of the plasma membrane, rhizosphere pH barrier formation and quelling by exudates such as organic acids and phenolic compounds [1,12,13,14,15]. Tolerance mechanisms are active after Al enters the cell - Al ions can be quelled in the cytosol, compartmentalized inside the vacuole or proteins that bind directly to Al may become highly expressed [12,16,17]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.