Abstract

Graph Matching (GM) plays an essential role in computer vision and machine learning. The ability of using pairwise agreement in GM makes it a powerful approach in feature matching. In this paper, a new formulation is proposed which is more robust when it faces with outlier points. We add weights to the one-to-one constraints, and modify them in the process of optimization in order to diminish the effect of outlier points in the matching procedure. We execute our proposed method on different real and synthetic databases to show both robustness and accuracy in contrast to several conventional GM methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.