Abstract
Graph matching, which refers to a class of computational problems of finding an optimal correspondence between the vertices of graphs to minimize (maximize) their node and edge disagreements (affinities), is a fundamental problem in computer science and relates to many areas such as combinatorics, pattern recognition, multimedia and computer vision. Compared with the exact graph (sub)isomorphism often considered in a theoretical setting, inexact weighted graph matching receives more attentions due to its flexibility and practical utility. A short review of the recent research activity concerning (inexact) weighted graph matching is presented, detailing the methodologies, formulations, and algorithms. It highlights the methods under several key bullets, e.g. how many graphs are involved, how the affinity is modeled, how the problem order is explored, and how the matching procedure is conducted etc. Moreover, the research activity at the forefront of graph matching applications especially in computer vision, multimedia and machine learning is reported. The aim is to provide a systematic and compact framework regarding the recent development and the current state-of-the-arts in graph matching.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.