Abstract
Recently, we reported that GM-CSF showed therapeutic effects on the spinal cord injury (SCI) in rat model possibly via its anti-apoptotic activity in the nervous system. This study investigated the molecular mechanism of its anti-apoptotic and neuroprotective effects in N2a neuroblastoma cells and in rat SCI model. GM-CSF inhibited staurosporine-induced cytotoxicity and apoptosis of N2a cells. Single administration of GM-CSF either intraperitoneally or locally using a gelfoam, clearly reduced the apoptotic events in the surrounding region of the injury site in rat SCI model. Immunohistochemical analysis showed that apoptosis of cells occurred mainly in the neurons, but not significantly in the astrocytes in the surrounding regions. In both N2a cells and in rat SCI model, GM-CSF actually reduced the expression of pro-apoptotic proteins (p53, p21 WAF1/CIP1 and Bax), while further induced that of an anti-apoptotic protein (Bcl-2). In the Basso–Beattie–Bresnahan (BBB) locomotor test, the single GM-CSF administration showed better behavioral recovery than the untreated control only at early times within 1 week after injury. Overall, GM-CSF was shown to exert its neuroprotective effect on the neural injury by regulating the expression of apoptosis related genes, providing the molecular basis on its anti-apoptotic activity. Longer administration of GM-CSF appeared to be necessary for the sustained functional recovery from SCI.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.