Abstract

The striatum consists of two anatomically and neurochemically distinct compartments, striosomes and the matrix, which receive dopaminergic inputs from the midbrain and exhibit distinct dopamine release dynamics in acute brain slices. Striosomes comprise approximately 15 % of the striatum by volume and are distributed mosaically. Therefore, it is difficult to selectively record dopamine dynamics in striosomes using traditional neurochemical measurements in behaving animals, and it is unclear whether distinct dynamics play a role in associative learning. In this study, we used transgenic mice selectively expressing Cre in striosomal neurons, combined with a fiber photometry technique, to selectively record dopamine release in striosomes during classical conditioning. Water-restricted mice could distinguish the conditioned stimulus (CS) associated with saccharin water from the air-puff-associated CS. The air-puff-associated CS evoked phasic dopamine release only in striosomes. Furthermore, air puff presentation induced dopamine release to striosomal neurons but suppressed release to striatal neurons non-selectively recorded. These findings suggest that dopamine is released in a differential manner in striosomes and the matrix in behaving animals and that dopamine release in striosomes is preferentially induced by the air-puff-associated CS and air puff presentation. These findings support the hypothesis that striosomal neurons play a dominant role in aversive stimuli prediction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.