Abstract

Addition of millimolar sodium glyoxylate to spinach (Spinacia oleracea) chloroplasts was inhibitory to photosynthetic incorporation of (14)CO(2) under conditions of both low (0.2 millimolar or air levels) and high (9 millimolar) CO(2) concentrations. Incorporation of (14)C into most metabolites decreased. Labeling of 6-P-gluconate and fructose-1,6-bis-P increased. This suggested that glyoxylate inhibited photosynthetic carbon metabolism indirectly by decreasing the reducing potential of chloroplasts through reduction of glyoxylate to glycolate. This hypothesis was supported by measuring the reduction of [(14)C]glyoxylate by chloroplasts. Incubation of isolated mesophyll cells with glyoxylate had no effect on net photosynthetic CO(2) uptake, but increased labeling was observed in 6-P-gluconate, a key indicator of decreased reducing potential. The possibility that glyoxylate was affecting photosynthetic metabolism by decreasing chloroplast pH cannot be excluded. Increased (14)C-labeling of ribulose-1,5-bis-P and decreased 3-P-glyceric acid and glycolate labeling upon addition of glyoxylate to chloroplasts suggested that ribulose-bis-P carboxylase and oxygenase might be inhibited either indirectly or directly by glyoxylate. Glyoxylate addition decreased (14)CO(2) labeling into glycolate and glycine by isolated mesophyll cells but had no effect on net (14)CO(2) fixation. Glutamate had little effect on net photosynthetic metabolism in chloroplast preparations but did increase (14)CO(2) incorporation by 15% in isolated mesophyll cells under air levels of CO(2).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.