Abstract
Net photosynthetic (14)CO(2) fixation by isolated maize (Zea mays) bundle sheath strands was stimulated 20 to 35% by the inclusion of l-glutamate or l-aspartate in the reaction mixture. Maximal stimulation occurred at a 7.5 mm concentration of either amino acid. Since the photosynthetic rate and the glutamate-dependent stimulation in the rate were equally sensitive to a photosynthetic electron transport inhibitor, 3-(p-chlorophenyl)-1,1-dimethylurea, it was concluded that glutamate did not stimulate CO(2) fixation by supplying needed NADPH (NADH) through glutamate dehydrogenase. Treatment of the bundle sheath strands with glutamate inhibited glycolate synthesis by 59%. Photorespiration in this tissue, measured as the O(2) inhibition of CO(2) fixation (the Warburg effect), was inhibited by treatment with glutamate. The stimulation in net photosynthetic CO(2) fixation probably results from the decrease in photorespiratory CO(2) loss. This metabolic regulation of the rate of glycolate synthesis and photorespiration observed with isolated bundle sheath strands could account for the inability to detect rapid photorespiration in the mature intact maize leaf.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.