Abstract

Root cap cuticles (RCCs), comprising mainly very-long-chain fatty acids (VLCFAs), promote salt tolerance by preventing ion influx. Glycosylphosphatidylinositol-anchored lipid transfer protein (LTPG)1 and LTPG2 participate in VLCFA deposition in the extracellular region, aiding RCC formation in the lateral roots. In this study, we investigated whether LTPG1 and LTPG2 have similar functions in the primary roots of young Arabidopsis thaliana. Phenotypic analyses, fluorescence microscopy, and RT-qPCR confirmed that NaCl exposure induced LTPG1 and LTPG2 expression and promoted RCC formation in young primary roots. The loss of RCC in the ltpg1 and ltpg2 mutants resulted in increased NaCl sensitivity of root elongation. NaCl also upregulated the expression of several NaCl-responsive genes in ltpg1 and ltpg2. We conclude that RCC formation via LTPG function is pivotal in enhancing salt tolerance in young primary roots.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.