Abstract

Glycosaminoglycans (GAGs) are long, linear polysaccharides that are ubiquitously expressed on the cell surface and in the extracellular matrix of all animal cells. These complex carbohydrates are composed of alternating glucosamine and uronic acids that can be heterogeneously N- and O-sulfated. The arrangement and orientation of the sulfated sugar residues specify the location of distinct ligand binding sites on the cell surface, and their capacity to bind ligands impacts cell growth and development, the ability to form tissues and organs, and normal physiology. The heterogeneous nature of GAGs and their inherent structural diversity across different tissues, cell types, and disease states creates challenges to characterizing their structure and function. Here, we describe detailed methods to investigate GAG-protein interactions in vitro and evaluate the structural composition of two classes of sulfated GAGs, heparan sulfate and chondroitin/dermatan sulfate, using liquid chromatography, mass spectrometry, and radiolabeling techniques. Overall, these methods facilitate the evaluation of GAG structure and function to uncover the unique roles these molecules play in cell biology and human disease.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call