Abstract
The glycolipid transfer protein (GLTP) has been linked to many cellular processes aside from its best-known invitro function as a lipid transport protein. It has been proposed to act as a sensor and regulator of glycosphingolipid homeostasis in cells. Furthermore, through its previously determined interaction with the endoplasmic reticulum membrane protein VAP-A (vesicle-associated membrane protein-associated protein A), GLTP may also be involved in facilitating vesicular transport in cells. In this study, we characterized the phenotype of CRISPR/Cas9-mediated GLTP KO HeLa cells. We showed that motility, three-dimensional growth, and cellular metabolism were all altered by GLTP knockout. Expression of a GLTP mutant incapable of binding VAP disrupted cell spheroid formation, indicating that the GLTP-VAP interaction is linked to cellular adhesion, cohesion, and three-dimensional growth. Most notably, we found evidence that GLTP, through its interaction with VAP-A, affects vesicular trafficking, marking the first cellular process discovered to be directly impacted by a change in GLTP expression.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.