Abstract

Glycogen consumption was investigated in isolated adult rat myocytes incubated for 2 h (37 degrees C) in substrate-free, hypoxic Krebs-Henseleit bicarbonate buffer. No consumption of glycogen occurred after 1 h of incubation, and the residual glycogen after 2 h was 23% despite an 89% reduction of the initial ATP content (from 27.1 +/- 1.8 to 3.1 +/- 0.5 nmol/mg dry weight, n = 12). The residual glycogen was not due to lactate inhibition of glycolytic enzymes, since myocytes incubated in the presence of 5 mM glucose maintained high energy phosphates throughout the incubation period despite a considerable lactate accumulation (1740 +/- 43 nmol/mg dry weight in glucose-supplemented vs. 138 +/- 14 nmol/mg dry weight in substrate-free incubations, n = 12). We have previously shown that the content of cyclic AMP in myocytes is not altered in response to hypoxia, thereby excluding activation of glycogen phosphorylase a. In the present study, the fall in myocyte ATP content was not followed by a rise in AMP, possibly preventing allosteric activation of glycogen phosphorylase b. However, addition of cyanide to the hypoxic incubations increased cellular AMP (initial level 2.1 +/- 0.4 nmol/mg dry weight vs. 9.8 +/- 0.7 after 30 min, n = 12) without increasing the amount of glycogen consumed, also ruling out the lack of glycogen phosphorylase b activation in the myocytes. Therefore, the glycogen rest was probably confined to the 17% of myocytes hypercontracted at the start of incubations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.