Abstract

To enhance the drug delivery efficiency of hyaluronic acid (HA), we designed and prepared glycodendron and pyropheophorbide-a (Ppa)-functionalized HA (HA-Ppa-Dendron) as a nanosystem for cancer photodynamic therapy. Linear Ppa-modified HA (HA-Ppa) was also prepared as a control. Cellular uptake of both polymers by MDA-MB-231 cells led to mitochondrial dysfunction and generation of reactive oxygen species under the irradiation of a laser. Compared to the linear polymer, HA-Ppa-Dendron had higher molecular weight, a more compact nanoscale particle size, and a dendritic structure, resulting in a much longer blood circulation time and higher tumor accumulation. HA-Ppa-Dendron outperformed HA-Ppa in inhibiting cell growth, with 60 % of tumors was eradicated under laser irradiation. Tumor growth inhibition (TGI) up to 99.2 % was achieved from HA-Ppa-Dendron, which was much higher than that of HA-Ppa (50.6 %). Therefore, glycodendron-functionalized HAs by integration of HA and dendritic polymers may act as efficient anti-cancer nanomedicine.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call