Abstract

The high molecular weight (>1MDa) of hyaluronic acid (HA) is important for its biological functions. The reported limiting factors for the production of HA with high molecular weight (MW) by microbial fermentation are the insufficient HA precursor pool and cell growth inhibition. To overcome these issues, the Xenopus laevis xhasA2 and xhasB genes encoding hyaluronan synthase 2 (xhasA2) and UDP-glucose dehydrogenase (xhasB), were expressed in Pichia pastoris widely used for production of heterologous proteins. In this study, expression vectors containing various combination cassettes of HA pathway genes including xhasA2 and xhasB from X. laevis as well as UDP-glucose pyrophosphorylase (hasC), UDP-N-acetylglucosamine pyrophosphorylase (hasD) and phosphoglucose isomerase (hasE) from P. pastoris were constructed and tested. First, HA pathway genes were overexpressed using pAO815 and pGAPZB vectors, resulting in the production of 1.2MDa HA polymers. Second, in order to decrease hyaluronan synthase expression a strong AOX1 promoter in the xhasA2 gene was replaced by a weak AOX2 promoter which increased the mean MW of HA to 2.1MDa. Finally, the MW of HA polymer was further increased to 2.5MDa by low-temperature cultivation (26°C) which reduced cell growth inhibition. The yield of HA production by the P. pastoris recombinant strains in 1L of fermentation culture was 0.8–1.7g/L.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.