Abstract

Nanomedicines that combine reactive oxygen species (ROS)-responsive polyprodrug and photodynamic therapy have shown great potential for improving treatment efficacy. However, the consumption of ROS by overexpressed glutathione in tumor cells is a major obstacle for achieving effective ROS amplification and prodrug activation. Herein, we report a polyprodrug-based nanoparticle that can realize ROS amplification and cascaded drug release. The nanoparticle can respond to the high level of hydrogen peroxide in tumor microenvironment, achieving self-destruction and release of quinone methide. The quinone methide depletes intracellular glutathione and thus decreases the antioxidant capacity of cancer cells. Under laser irradiation, a large amount of ROS will be generated to induce cell damage and prodrug activation. Therefore, the glutathione-depleting polyprodrug nanoparticles can efficiently inhibit tumor growth by enhanced photodynamic therapy and cascaded locoregional chemotherapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call