Abstract
ObjectiveTo our knowledge, no data have yet shown the combined effects of GSTM1/GSTT1 gene polymorphisms with high consumption of a fruit and vegetable diet on the body's antioxidant capacity. A 2-wk dietary intervention in healthy participants was conducted to test the hypothesis that the antioxidant biomarkers in individuals with different glutathione-S-transferases (GST) genotypes will be different in response to a high fruit-juice and vegetable diet. MethodsIn our study, 24 healthy volunteers with different GST genotypes (12 GSTM1+/GSTT1+ and 12 GSTM1–/GSTT1– participants) consumed a controlled diet high in fruit-juice and vegetables for 2 wk. Blood and first-void urine specimens were obtained at baseline, 1-wk, and 2-wk intervals. The antioxidant capacity–related biomarkers in blood and urine were observed and recorded at the scheduled times. ResultsErythrocyte GST and glutathione reductase (GR) activities response to a high fruit-juice and vegetable diet are GST genotype-dependent. Two weeks on the high fruit-juice and vegetable diet increased GST and GR activities in the GSTM1+/GSTT1+ group (P < 0.05 compared with baseline or GSTM1–/GSTT1– group), although no effects were observed on GST and GR activities in GSTM1–/GSTT1– participants. Dietary intervention increased total antioxidant capacity and decreased plasma malondialdehyde content in all participants (P < 0.05 compared with baseline), whereas GSTM1+/GSTT1+ participants respond more quickly to a high fruit-juice and vegetable diet than GSTM1–/GSTT1– participants. The diet intervention was effective in enhancing glutathione peroxidase and catalase activities in all participants (P < 0.05 compared with baseline), although there was no influence on erythrocyte superoxide dismutase activity (P > 0.05). ConclusionThe effects of a diet rich in fruit-juice and vegetables on antioxidant capacity were dependent on GSTM1/GSTT1 genotypes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.