Abstract

Hangovers from alcohol consumption cause symptoms like headaches, nausea, and fatigue, disrupting daily activities and overall well-being. Over time, they can also lead to inflammation and oxidative stress. Effective hangover relief alleviates symptoms, prevents dehydration, and replenishes energy needed for daily tasks. Natural foods considered high in antioxidants and antiinflammatory properties may aid in the hepatic breakdown of alcohol. The study aims to investigate the impact of glutathione or its enriched yeast extract, which is recognized for its antioxidant characteristics, on alcohol metabolism and alleviating hangovers in a rat model exposed to binge drinking. In this study, glutathione and its enriched yeast extract controlled hangover behaviour patterns, including locomotor activity. Additionally, it enhanced the activities of alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) following ethanol ingestion (3 g/kg). Further, the incorporation of glutathione led to an increase in the expression of antioxidant enzymes, such as SOD and catalase, by activating the nuclear erythroid 2-related factor 2 (Nrf2) signaling pathway. This activation reduced the excessive production of reactive oxygen species (ROS) and malondialdehyde. Next, glutathione modulated the activity of cytochrome P450 2E1 (CYP2E1) and the protein expressions of Bax and Bcl2. Besides, in vitro and in vivo investigations with glutathione demonstrated a regulating effect on the pan-s-glutathionylation and its associated protein expression, glutaredoxin 1 (Grx1), glutathione-S-transferase Pi (GST-π), and glutathione reductase (GR). Together, these findings suggest that glutathione or its enriched yeast extract as a beneficial dietary supplement for alleviating hangover symptoms by enhancing alcohol metabolism and its associated Nrf2/Keap1 signalings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.