Abstract

Arsenic (AS) is a metalloid element that widely exists and can cause different degrees of liver damage. The molecular mechanism of arsenic-induced liver injury has yet to be fully elucidated. Clinically, glutathione (GSH) is often used as an antidote for heavy metal poisoning and hepatoprotective drugs. However, the hepatoprotective effect of glutathione remains unknown in arsenic-induced liver injury. The regulatory relationship between Foxa2 and XIAP may play an important role in mitochondrial survival and death. Therefore, we took Foxa2-XIAP as the axis to explore the protective mechanism of GSH. In this study, we first established a mouse model of chronic arsenic exposure and examined liver function as reflected by quantitative parameters such as aspartate aminotransferase and alanine aminotransferase. Also, redox parameters in the liver were measured, including malondialdehyde, superoxide dismutase, 8-hydroxy-2'-deoxyguanosin, and glutathione peroxidase. RT-qPCR and western-blotting were used to detect the levels of related genes and proteins, such as Foxa2, XIAP, Smac, Bax, Bcl2, Caspase9, and Caspase3. Subsequently, GSH was administered at the same time as high arsenic exposure, and changes in the above parameters were observed. After a comprehensive analysis of the above results, we demonstrate that GSH treatment alleviates arsenic-induced oxidative stress and inhibits the mitochondrial pathway of apoptosis, which can be regulated through the Foxa2 and XIAP axis. The present study would be helpful in elucidating the molecular mechanism of arsenic-induced liver injury and identifying a new potential therapeutic target. And we also provided new theoretical support for glutathione in the treatment of liver damage caused by arsenic.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.