Abstract

Lithium preparations are commonly used drug in treating mental disorders and bipolar diseases, but metal's cytotoxic mechanisms have not yet been completely understood. In this study, we investigated the cytotoxic mechanisms of lithium in freshly isolated rat hepatocytes. Lithium cytotoxicity were associated with reactive oxygen species (ROS) formation and collapse of mitochondrial membrane potential and cytochrome c release into the hepatocyte cytosol. All of the mentioned lithium-induced cytotoxicity markers were significantly (P<0.05) prevented by ROS scavengers, antioxidants, mitochondrial permeability transition pore sealing agents and adenosine triphosphate generators. Hepatocyte glutathione (GSH) was also rapidly oxidized and GSH-depleted hepatocytes were more resistant to lithium-induced oxidative stress markers. This suggests that lithium is activated by GSH. Our results also showed that CYP2E1 is involved in lithium oxidative stress mechanism. Lithium cytotoxicity was also associated with mitochondrial injuries initiated by increased ROS formation resulted from metal-CYP2E1 destructive interaction or metal-induced disruption of mitochondrial electron transfer chain. Methyl donors such as betaine, methionine, or folic acid prevented lithium cytotoxicity, and this suggests that this metal is detoxified by phase II metabolic methylation. In conclusion lithium-induced cytotoxicity could be attributed to oxidative stress and mitochondrial dysfunction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call