Abstract

Glutaredoxins are oxidoreductases present in almost all living organisms. They belong to the thioredoxin superfamily and share the thioredoxin structure and catalytic motif. Glutaredoxin 2 has been identified as a mitochondrial protein in vertebrates. In this study, the sequence of Glutaredoxin 2 from Hippocampus abdominalis (HaGrx2) was analyzed by molecular, transcriptional, and functional assays. In-silico analysis revealed that HaGrx2 shows the highest homology with Hippocampus comes, while distinctly cluster with fish Grx2 orthologs. Tissue distribution analysis showed that HaGrx2 is ubiquitously expressed in all tissues tested, and the highest expression was observed in the brain and skin. Significant HaGrx2 transcript modulation was identified in blood and liver upon injecting bacterial and Pathogen Associated Molecular Patterns. The redox activity of HaGrx2 was revealed by Dehydroascorbic reduction and insulin disulfide reduction activity assays. Further, the deglutathionylation activity of 1 nM HaGrx2 was found to be equivalent to that of 0.84 nM HaGrx1. HaGrx2 exhibited antiapoptotic activity against H2O2-induced oxidative stress in FHM cells. Altogether, the results of this study suggest that HaGrx2 plays a role in redox homeostasis and innate immune responses in fish.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call