Abstract

During physiological stress, the lung increases production of the amino acid glutamine (Gln) using the enzyme Gln synthetase (GS) to maintain Gln homeostasis. Glucocorticoid hormones are considered the principal mediators of GS expression during stress. However, whereas animal studies have shown that glucocorticoids increase lung GS mRNA levels 500-700%, GS activity levels rise only 20-45%. This discrepancy suggests that a posttranscriptional control mechanism(s) ultimately determines GS expression. We hypothesized that the level of GS protein in the lung is governed by the intracellular Gln concentration through a mechanism of protein destabilization, a feedback regulatory mechanism that has been observed in vitro. To test this hypothesis, Sprague-Dawley rats were treated with a Gln-free diet and the GS inhibitor methionine sulfoximine (MSO) to deplete tissue Gln levels and prevent this feedback regulation. Exposure to Gln-free chow and MSO (100 mg/kg body wt) for 6 days decreased plasma Gln levels 50% (P < 0.01) and decreased lung tissue Gln levels by 70% (P < 0.01). Although lung GS mRNA levels were not influenced by Gln depletion, there was a sevenfold (P < 0.01) increase in GS protein. A parenteral Gln infusion (200 mM, 1.5 ml/h) for the last 2 days of MSO treatment replenished lung Gln levels to 65% of control level and blunted the increase in GS protein levels by 33% (P < 0.05) compared with rats receiving an isomolar glycine solution. The acute effects of glucocorticoid and MSO administration on lung GS expression were also measured. Whereas dexamethasone (0.5 mg/kg) and MSO injections individually augmented lung GS protein levels twofold and fourfold (P < 0.05), respectively, the combination of dexamethasone and MSO produced a synergistic, 12-fold induction (P < 0.01) in lung GS protein over 8 h. The data suggest that, whereas glucocorticoids are potent mediators of GS transcriptional activity, protein stability greatly influences the ultimate expression of GS in the lung.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.