Abstract

By combining the tools of site-directed mutagenesis and [3H]ouabain binding, the functional role of glutamic acid 327 in the fourth transmembrane domain of the sheep alpha 1 isoform of Na+,K(+)-ATPase was examined with respect to its interactions with ouabain, Na+,K+,Mg2+, and inorganic phosphate. Using site-directed mutagenesis, this glutamic acid was substituted with alanine, aspartic acid, glutamine, and leucine. The mutant proteins were constructed in a sheep alpha 1 protein background such that [3H]ouabain binding could be utilized as a highly specific probe of the exogenous protein expressed in NIH 3T3 cells. Na+ competition of [3H]ouabain binding to the mutant forms of Na+,K(+)-ATPase revealed only slight alterations in their affinities for Na+ and in their abilities to undergo Na(+)-induced conformational changes which inhibit ouabain binding. In contrast, K+ competition of [3H]ouabain binding to all four mutant forms of Na+,K(+)-ATPase displayed severely altered interactions between these proteins and K+. Interestingly, [3H]ouabain binding to the mutant E327Q was not inhibited by the presence of K+. This mutant was previously reported to be functionally able to support cation transport with a 5-fold reduced K0.5 for K(+)-dependent ATPase activity (Jewell-Motz, E. A., and Lingrel, J.B. (1993) Biochemistry 32, 13523-13530; Vilsen, B. (1993) Biochemistry 32, 13340-13349). Thus, it appears that this glutamic acid in the fourth transmembrane domain may be important for stabilizing a K(+)-induced conformation within the catalytic cycle of Na+,K(+)-ATPase that is not rate-limiting in the overall ATPase cycle but that displays a greatly reduced affinity for ouabain.

Highlights

Read more

Summary

Introduction

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.